
Hypervirial theorems applied to the linear oscillator with velocity-dependent anharmonicity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1973 J. Phys. A: Math. Nucl. Gen. 6 778

(http://iopscience.iop.org/0301-0015/6/6/006)

Download details:

IP Address: 171.66.16.87

The article was downloaded on 02/06/2010 at 04:46

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0301-0015/6/6
http://iopscience.iop.org/0301-0015
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A :  Math., Nucl. Gen., Vol. 6 ,  June 1973. Printed in Great Britain. 0 1973 
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Abstract. An alternative derivation is given of a perturbation theoretic scheme for the 
anharmonic oscillator recently proposed by Swenson and Danforth. The scheme uses the 
hypervirial and Hellmann-Feynman theorems. The calculation is extended to velocity- 
dependent perturbations. As a special case, the linear relativistic quantum oscillator is 
studied to second order, and the corresponding energies worked out. Various powers-of- 
momentum expectation values are also worked out in this order. 

1. Introduction 

The use of hypervirial and Hellmann-Feynman theorems in perturbation theory is 
well known (see eg Epstein and Hirschfelder 1961). Recently, Swenson and Danforth 
(1972) applied these theorems to the anharmonic oscillator with a perturbation of the 
form kq", where k is an infinitesimal parameter, and q is the position coordinate variable. 
They developed a specific procedure by means of which the eigenvalue problem may be 
solved in principle to any order of perturbation theory. 

In this paper, we examine the extension of these authors' results to the case where 
the perturbation is of the velocity-dependent form kp", where p is the momentum 
variable. In so doing, we also present an alternative derivation of the result that the 
perturbations in energy and in the expectation values of the momentum and position 
coordinates, and of their powers, are expressible solely in terms of the unperturbed 
energy, E o .  For the linear oscillator which we are treating, this means of course that 
the inclusion of perturbations of the form kq" or kp" would not lift any degeneracy that 
might exist at  the zeroth order. 

As a special example, we investigate the linear relativistic harmonic oscillator 
defined by the hamiltonian 

H = ( p 2 ~ 2 + m 2 ~ 4 ) 1 ' 2 - m c 2 + $ n o 2 q 2  'v -++mu P 2  2 2 -~ P4 
2m 8m3c2'  

2. General anharmonic oscillator 

Let w denote the characteristic angular frequency of a harmonic oscillator. We measure 
energy in units of ihw, momentum in units of (hmw)"*, and position coordinates in 
units of (h/mw)1'2. Let the added perturbation be -kp", where n 2 0, and k is an 
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infinitesimal parameter. Then the general anharmonic oscillator we investigate has 
hamiltonian 

H = p 2  + q 2  - kp". 

The eigenvalue equation is written 

Hln(k)) = Eln(k)) ; 

(n(k)ln(k)> = 1. 
For any operator A, we denote (n(k)lAln(k)) simply by ( A ) .  Let W be a time-independent 
operator-valued function of the dynamical variables p ,  q .  Then from the Hellmann- 
Feynman theorem we have 

aE 
ak 
- = - ( p " ) ;  

and from the hypervirial theorem we have 

Following Swenson and Danforth (1972) we choose 

w = qbpa, a, b 2 0. 

Now from the Weyl algebra 

- 1  

We assume that the quantities E, (p ' )  for c > 0 are expressible as a convergent power 
series in k ,  and put 

P E (p ' )  = 

E = knEn. 

k"(p'), E C knc 
n =  0 n = O  

n = O  

Also let 
p," = 4 0 ,  

so that (6) is also true for c = 0. 
Combining (6 )  with (1) and (71, we obtain 

E = - r -  Ir- 1, r 2 1. (9) 

Now using (5) in (2), the hypervirial theorem becomes 

= 0. (10) 
( a  i,q2+b-rpa-1qr-l-b C 2 p2-rqb-lpr+a-1+kb 

p n - r q b - l p r - l + a  

r =  1 r =  1 r =  1 

We shall consider two special cases, namely b = 0 and b = 1. 
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(i) For b = 0 we have 

that is, 
( q p a -  1 )  = - (pa-lq). 

Using ( 5 )  in (1  l), we have 

2(qp"-') = (i(a- ~ ) p " - ~ )  = -2(p'-'q). 

Equation (12) is the analogue of equation (6) of Swenson and Danforth (1972). 
(ii) For b = 1 we have 

that is, 

2a( q 'pa - ' ) - 2( pa - ) + +a( a - 1) (a - 2)( pa - 3,  + n k( p" - + ") = 0, 

where we have used ( 5 )  and (12). We now use the (re-arranged) eigenvalue equation 

q 2 / n )  = ( E  -p2 + kp")ln) 

to eliminate q 2  from (13). We obtain 

2aEP"- - 2(a + 1)P"' + &a - 1) (a  - 2)P"- + k(2a + n)P"+" - ' = 0. (14) 

We now use (6) and (7) in (14). Then, by rewriting this as a power series in k ,  and equating 
the coefficients of k" to zero, we obtain 

where 
if i < r  
if i 2 r .  

O ( i - r - )  

(It is to be noted that O is defined at  the origin i = r as having the value + 1.) 
For any given value of n, equation (15) is the expression in terms of the unperturbed 

energy E o  of the ith order perturbation theoretic correction to (pa' '). The correspond- 
ing energy is given by (9). 

3. Application to the linear relativistic quantal oscillator 

The hamiltonian for this system is 

H = (p2c2 + m2c4)l - nic2 + f ~ z ~ ~ q ~  
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In the units of energy, momentum, and position coordinates which we are using, this 
becomes 

(17) H = p 2  + q2 - kp4 + Ob6), 

where 

The condition k << 1 is always satisfied for vibrating physical systems, for if we take m 
to be of the order of the protonic mass, which is reasonable, then k << 1 implies 
o << 4mc2/h, that is, o << 5.7 x loz4 Hz, which would be satisfied in practice. 

Substituting n = 4 in equation (15) gives 

(i) For i = 0 (ie first-order perturbation theory) direct substitution gives 

P i  = $Eo, E ,  = 2n+ 1, n = 0, 1,2,  . . .  
P: = $(E;+ 1) 

Pg = &(E: + 5Eo) 

P: = &E:+ 14Ei+9) 

and 

0, r = 0, 1,2, .  . p;r+1 = 

E1 = -+(E;+ I), 

that is, 
3(hw)2 3(ho)2 

kE1 = -__ n(n+ 1)-- 
1 6mc2 32mc2 

(energy units). 

(ii) For i = 1 (ie second-order perturbation theory) 

p2r+l 1 = 0, r = 0,1,2, . . .  
p2 - 3 1 - , (Ei+1) 

P: = &17E;+67Eo) 
E - _ _  - ,‘,(67E0+ 17E;) 

z - (Eo+$;)  

= -&8n3 + 12nZ + 14n + 5).  

4. Conclusion 

We have extended Swenson and Danforth’s scheme for using the hypervirial and 
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Hellmann-Feynman theorems in carrying out nth order perturbation theoretic calcula- 
tions for an anharmonic oscillator to the case where the anharmonicity is velocity- 
dependent and of the form kp", where p is the momentum variable. In the process, we 
have rederived Swenson and Danforth's results in an alternative form. We apply the 
results to the linear relativistic quantal oscillator as an example, and solve the energy 
eigenvalue problem for this system up to second order. Expectation values of various 
powers of the momentum have also been derived up to this order. 

As would be expected, expectation values of all odd powers of p vanish in all orders 
of perturbation theory if the perturbation is of the form kp", r = 0, 1 , 2 , .  . . . 
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